When you open a container of lubricating grease, chances are you may see a thin layer of oil at the top of the grease. The first thought that usually jumps to mind is whether the grease is suitable for use. The answer is in most instances, yes, but to understand the phenomenon of oil separation (bleeding) we need to revisit the fundamentals of grease.
Grease is a dispersion of a thickening agent in a liquid lubricant. the thickener can be compared to a ‘sponge’ that soaks up the lubricant. When the grease is subjected to stress or shear 9movement), the thickener releases the oil to provide the necessary lubrication. This is generally known as Dynamic Bleed. It is important that the grease has a controlled rate of bleeding during use to properly lubricate the bearing or component it has been placed in. The greater the amount of sheer stress encountered, the faster the grease thickener releases the oil. the thickener imparts little, if any, lubrication. If the thickener did not release the oil, the grease would be unable to perform its lubricating function.
In service, grease should also have a fair degree of reversibility after the stresses that have released the oil are relaxed. Reversibility can be described as the ability of the grease to recapture most of the oil and return to its original consistency when the equipment is shut down. The reversibility characteristics of grease are influenced by the type and amount of thickener used. The higher the thickener content, the greater the oil retention. As the base oil content is increased and the amount of thickener decreased, the forces that hold the oil also decrease, resulting in the base oil being loosely held in the thickener and easily separated.
Considering the above, one would think that using a higher thickener content is better. However, as mentioned earlier, grease with a thickener that does not release the oil readily, would be unable to perform its lubricating functions. It is therefore important that grease must have the proper balance of oil and thickener to function properly.The oil on top of grease in a container that has been opened for the first time is called Static Bleed. Static bleed, also referred to as oil puddling, occurs naturally for all types of grease and the rate of bleeding depends on the composition of the grease. Static oil bleeding is affected by:
- Storage Temperature
- Length of period in storage
- Vibrations the container may be exposed to during transport or storage
- Uneven grease surface in the container (the presence of high and low spots)
These conditions can cause weak stresses to be placed on the grease, resulting in the release of small amounts of oil and over time a puddle of oil can form on top of the grease. Reasonable static bleeding does not result in the grease being unsuitable for use. Any oil that has puddled on the grease can be removed by decanting the free oil from the surface or manually stirring it back into the grease. The quantity of oil that has separated from the grease is generally insignificant and represents a mere fraction of the total quantity of oil that is held in the thickener (typically less than 1%). This small amount of oil will not adversely affect the consistency of the remaining product and will have little or no effect on the performance of the grease.
In conclusion, it is therefore safe to say grease with puddling on the top is suitable for use subject to the following conditions:
- The amount of oil should be small, covering only low spots on the surface of the grease.
- The grease must readily absorb the oil upon stirring.






To improve (reduce) the pour point of these oils, pour point depressants (PPDs) are added. PPDs do not in any way affect the temperature at which wax crystallizes or the amount of wax that precipitates. They simply ‘coat’ the wax crystals preventing them to interlock and forming three-dimensional structures that inhibit oil flow. Good PPDs can lower the pour point by as much as 40 0 C, depending on the molecular weight of the oil.

imes, we need to look at how friction and wear occur between moving machine surfaces. These surfaces appear smooth to the naked eye, but they are actually rough and uneven. Tiny peaks called asperities stick out and scrape against asperities on the opposing surface, causing friction and wear. The prime function of a lubricant is to prevent, or at least reduce, wear between surfaces moving on one another. We will endeavour to explain the lubrication of a plain journal bearing in parallel to the skiing analogy above. To enable the shaft to rotate in the bearing on the left, the diameter of the shaft must be less than the inside diameter of the bearing. This creates a wedge similar to the one between the skis and the water.
he shaft and bearing asperities in a lubricated system will be in physical contact. The major portion of wear in any machine takes place in this regime. To prevent excessive wear within this regime, lubricants are formulated with additives to form a low-friction, protective layer on the wear surfaces. The base oil of the lubricant acts as a carrier to deposit the additives where they are needed. A suitable viscosity is important to ensure the oil can flow into tight spaces to lubricate the surfaces. The additive chemistry (anti-wear or extreme pressure) used within the lubricant is determined by the application.
the pressure that develops is sufficient to separate the roller and raceway completely. In fact, the pressure is high enough for the surfaces to deform elastically. The deformation only occurs in the contact zone, and the metal elastically returns to its normal form as the rotation continues, hence the term elastohydrodynamic lubrication. This lubrication regime may be compared to a car tyre aquaplaning on water. It occurs when water on the road accumulates in front of the tyre faster than the weight of the car can push push it out of the way.


Reciprocating compressors function similarly to a car engine. A piston slides back and forth in a cylinder, which draws in and compresses the air, and then discharges it at a higher pressure. Reciprocating compressors are frequently multiple-stage systems, which means that one cylinder’s discharge will lead into the input side of the next cylinder. This allows for more compression than a single stage. Due to their relatively low cost, reciprocating compressors are probably the most commonly used compressors.
These compressors use two meshing screws (also called rotors) to compress the air. In oil flooded rotary screw compressors, lubricating oil bridges the space between the rotors. This provides a hydraulic seal and transfers mechanical energy between the driving rotor and the driven rotor. Air enters at the suction side, the meshing rotors force it through the compressor, and the compressed air exits at the end of the screws.
Rotary vane compressors consist of a rotor with a number of blades (vanes) inserted in radial slots in the rotor. The rotor is mounted offset in a housing. As the rotor turns, the blades slide in and out of the slots, keeping contact with the wall of the housing. Thus, a series of increasing and decreasing volumes are created by the rotating blades to compress the air. Centrifugal forces ensure that the vanes are always in close contact with the housing to form an effective seal.
A rotating impeller in a shaped housing is used to force the air to the rim of the impeller, increasing the velocity of the air. A diffuser (divergent duct) section converts the velocity energy to pressure energy. Radial compressors are primarily used to compress air and gasses in stationary industrial applications.
These compressors use fanlike airfoils (also known as blades or vanes) to compress air or gas. The airfoils are set in rows, usually as pairs, one rotating and one stationary. The rotating airfoils (rotors) accelerate the air. The stationary airfoils (stators) redirect the flow direction, preparing it for the rotor blades of the next stage. Axial compressors are normally used where very high flow rates are required. By nature of their design, axial flow compressors are almost always multi-stage.




